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Abstract

Previous studies have established that neurodegenerative disease such as Alzheimer’s disease 

(AD) is a disconnection syndrome, where the neuropathological burdens often propagate 

across the brain network to interfere with the structural and functional connections. In this 

context, identifying the propagation patterns of neuropathological burdens sheds new light on 

understanding the pathophysiological mechanism of AD progression. However, little attention 

has been paid to propagation pattern identification by fully considering the intrinsic properties 

of brain-network organization, which plays an important role in improving the interpretability 

of the identified propagation pathways. To this end, we propose a novel harmonic wavelet 

analysis approach to construct a set of region-specific pyramidal multi-scale harmonic wavelets, it 

allows us to characterize the propagation patterns of neuropathological burdens from multiple 

hierarchical modules across the brain network. Specifically, we first extract underlying hub 

nodes through a series of network centrality measurements on the common brain network 

reference generated from a population of minimum spanning tree (MST) brain networks. Then, 

we propose a manifold learning method to identify the region-specific pyramidal multi-scale 

harmonic wavelets corresponding to hub nodes by seamlessly integrating the hierarchically 

modular property of the brain network. We estimate the statistical power of our proposed harmonic 

wavelet analysis approach on synthetic data and large-scale neuroimaging data from ADNI. 

Compared with the other harmonic analysis techniques, our proposed method not only effectively 

predicts the early stage of AD but also provides a new window to capture the underlying hub 

nodes and the propagation pathways of neuropathological burdens in AD.
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1. Introduction

Alzheimer’s Disease (AD) is acknowledged as a progressive multifarious neurodegenerative 

disorder with the leading cause of memory loss, language impairment, disorientation, 

emotional instability, loss of motivation, and other behavioral problems when people 

are aging (Kumar et al., 2015; Mattson, 2004). Currently, the biological mechanisms 

underlying AD are not thoroughly understood, and no effective treatment exists (Stam, 

2014). Therefore, accurate prediction of developing AD at its early stage becomes critical in 

slowing down the progression of AD via the appropriate interventions.

Recent developments in diffusion-weighted imaging (DWI) and network neuroscience 

allow us to characterize the white matter fiber bundles that connect various grey matter 

areas in the context of the large-scale brain network (Conturo et al., 1999). Moreover, 

convergent evidence shows that AD can be understood as a disconnection syndrome where 

neuropathological processes progressively disrupt the large-scale brain network (Pievani 

et al., 2014; Wu et al., 2016; Sepulcre et al., 2018). Such brain-network changes in AD 

are manifested much earlier before the onset of clinical symptoms (Araque Caballero 

et al., 2018; Filippi et al., 2017), indicating that accurately discovering the propagation 

pathways of neuropathological burdens provides a new window to predict the risk of 

developing AD at its early phase. In this regard, it is necessary to study the fundamental 

aspects of the brain-network organization, which can be used to promote the power in 

identifying the propagation patterns of neuropathological events and better understand the 

pathophysiological mechanism in AD.

Unlike many other real networks, the brain network generally exhibits properties of small-

worldness and free scale, where the human brain is a hierarchical module organization, 

and hubs connect those modules. The high clustering of connections between nodes in 

the same module will favor locally segregated processing of specialized functions, while 

the short path length will support globally integrated processing of more generic functions 

(Sporns et al., 2004). Firstly, the hub nodes are usually located in the central positions of 

the network, exhibiting a much higher centrality than other nodes (van den Heuvel and 

Sporns, 2013), as shown in red and green nodes in Fig. 1(a). Based on the setting of 

network modules, hub nodes can be divided into two different categories, provincial hubs 

and connector hubs. Specifically, provincial hubs are the high-degree nodes that primarily 

connect to nodes in the same module (red nodes in Fig. 1(a)). Whereas, connector hubs are 

high-degree nodes that mainly connect to several different modules in the brain network 

(green nodes in Fig. 1(a)). In addition, emerging evidence shows that neuropathological 
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disruption selectively accumulates at some critical hub regions (Cope et al., 2018; Dai et 

al., 2015; Wang et al., 2020; Li et al., 2022). Secondly, hierarchical modularity is a type of 

network organization where each module in the brain network can be further partitioned into 

a set of sub-modules, and within each sub-module there may be sub-sub-modules (shown 

in Fig. 1(b)). And the hierarchical modularity gives the brain network the advantage of 

greater robustness, adaptivity, and evolvability of network function. Therefore, considering 

the hierarchical characteristic of the brain network in the developed methods would enhance 

the performance in identifying the brain-network changes in AD (Huang et al., 2021).

Recently, mounting evidence shows the whole brain network can be summarized as its 

own Eigensystem, which is a set of harmonic waves derived from the underlying Laplacian 

matrix of the brain network (Atasoy et al., 2016, 2017). Some studies have extended the 

discovery to Alzheimer’s disease, Chen et al. (2020b,a) first proposed a manifold learning 

approach to identify the global common harmonic waves from a set of brain networks, 

which can be used to characterize the network alterations in the graph spectrum domain. 

This method offers a new window into the investigation of frequency-based alterations in 

AD progression. Moreover, Chen et al. (2021) extended global common harmonic waves 

to localized harmonic wavelets by developing a harmonic localization method. This method 

generates a set of local single-scale harmonic wavelets (shown in Fig. 1(c)) where the 

oscillation patterns in each harmonic wavelet characterize the spreading pathway that can 

be used to investigate the local propagation patterns of neuropathology within a single 

hierarchical module. These methods demonstrate the ability of the harmonic analysis 

approach as a new brain network analysis technique to discover the propagation pathway 

of neuropathological burdens, which is more attractive in AD studies. However, the current 

harmonic wavelet identification approaches lack adequate consideration of the intrinsic 

properties of brain-network organization, limiting their performance in characterizing the 

accurate and interpretable propagation patterns of neuropathological events in the brain.

To overcome this limitation, we propose a novel harmonic wavelet analysis approach, 

which seamlessly incorporates topological characteristics in complex brain networks to 

discover a set of region-specific pyramidal multi-scale harmonic wavelets in the spatial 

domain of brain. Such learned harmonic wavelets allow us to characterize the propagation 

patterns of neuropathological burdens from multiple hierarchical modules across the brain 

network. Specifically, we first select the nodes with high centrality as the underlying 

hub nodes via a broad array of network centrality measures, including node degree, 

betweenness, pagerank, and participation coefficient, as shown in Fig. 2(a). Then, we 

design a hierarchically modular binary mask representation method to effectively describe 

the hierarchically modular property of the brain network (Fig. 2(b)). Next, a set of region-

specific pyramidal multi-scale harmonic wavelets (Fig. 2(c)) in the spatial domain of 

a hierarchical module (Fig. 2(b)) can be obtained via our proposed method. Since the 

spreading of the neuropathological burdens follows the topology of the brain network (Fig. 

2(d)), a new imaging biomarker depicting the resonance between the spatial pattern of 

pathological burdens and the oscillation pattern in the harmonic wavelet can be used to 

identify the AD-related spreading pathways of neuropathological events throughout the 

brain (Fig. 2(e)).
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We have evaluated the statistical power of our method on synthetic data and neuroimaging 

data from the ADNI database. Compared with other state-of-the-art harmonic analysis 

approaches, our proposed method achieves higher performance for classifying CN 

(cognitively normal), EMCI (early-stage mild cognitive impairment), and LMCI (late-state 

mild cognitive impairment) comparison. Furthermore, we have not only identified a set of 

brain regions that can be used as potential hub nodes leading to cognitive decline in AD 

progression, but also discovered the AD-related propagation patterns of neuropathological 

burdens spreading across brain networks.

2. Method

In this section, we first introduce the brief background on MST brain network and harmonic 

waves on brain network in Section 2.1. We then construct a harmonic wavelet analysis 

framework to identify a set of region-specific pyramidal multi-scale harmonic wavelets 

across the brain network in Section 2.2, followed by the optimization scheme in Section 2.3. 

The application of the learned multi-scale harmonic wavelets is demonstrated in Section 2.4. 

The notation used in this paper is summarized in Table 1 for ease of exposition.

2.1. Background: MST brain network and harmonic waves on brain network

2.1.1. MST brain network—In graph theory, each brain network constructed through 

MRI and DTI neuroimages can be represented as a graph G = V , E, W , with node 

set V = vi ∣ i ∈ 1, …, N  from N brain regions and edge set E = eij ∣ vi, vj ∈ V × V
representing all possible links between nodes. The symmetric adjacency matrix 

W = wij N × N ∈ ℝN × N with non-negative weights wij reflects the strength of node–node 

connection.

Reconstructing the MST brain network W  based on the adjacency matrix W  is a valid way 

to describe the brain network topology unbiased (van Dellen et al., 2018). In our method, the 

MST brain network is constructed by Kruskal’s algorithm (Kruskal, 1956), which is realized 

by following steps: (1) Rank all edges in descending order; (2) Select edge with maximum 

weight unless the edge makes those nodes into a loop; (3) Repeat step 2 until all nodes are in 

the tree.

2.1.2. Harmonic waves on brain network—As stated in Atasoy et al. (2016), we 

derive a set of harmonic waves Ψ ∈ ℝN × P  from the eigen-system of the underlying 

Laplacian matrix L = D − W , where the diagonal matrix D(i, i) = ∑j = 1
N wij can be regarded 

as the degree matrix of the graph. Each diagonal element indicates the total connectivity 

degree of the underlying node. Specifically, the harmonic waves Ψ  are estimated by solving 

the following eigenvalue problem:

min
Ψ ∈ ℝN × P

Tr ΨTL Ψ s . t . ΨTΨ = IP (1)

where Tr ⋅  is the trace operator and IP denotes the P × P  identity matrix. The deterministic 

solution Ψ = ψp p = 1
P  consists of the eigenvectors of the Laplacian matrix L associated with 
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the first P  smallest eigenvalues λp ∣ p = 1, …, P, λ1 ≤ λ2 ≤ ⋯ ≤ λP , indicating the harmonic 

wave exhibits faster oscillation patterns across the brain network as the eigenvalue increases. 

Since the harmonic waves associated with the high frequency (larger eigenvalues) are often 

sensitive to possible noise, we only consider the first P P < N  harmonic waves.

2.2. Framework: Region-specific pyramidal multi-scale harmonic wavelet construction on 
stiefel manifold

2.2.1. Extraction of brain regions with high centrality—Suppose we have a set 

of MST brain networks W t ∣ t = 1, …, T , we can calculate the group-mean adjacency 

matrix W‾  by averaging all MST brain networks W t , i.e., W− = 1
T ∑t = 1

T W t. In network 

neuroscience, the brain network is usually composed of many peripheral regions and some 

central regions, i.e., hubs, which manifest the key roles in transmitting and communicating 

hierarchical information (Li et al., 2022). As introduced in van den Heuvel and Sporns 

(2013), several network nodal measurements can be used to extract the brain regions 

with high centrality. For instance, the degree centrality is measured as the number of 

edges on nodes, and it is an appropriate measurement for identifying hub nodes. The 

pagerank centrality tends to detect nodes connected to other highly central nodes, and 

the betweenness centrality is defined as the number of shortest communication paths in 

the network that pass through a given node. The participation coefficient measures the 

distribution of the node’s edges, which achieves by maximizing the number of within-group 

edges and minimizing the number of between-group edges, so it is closely connected with 

provincial hubs and connector hubs. To this end, we select nodes with high centrality 

as underlying hub nodes by calculating a composite score of node degree, betweenness, 

pagerank, and participation coefficient on W− . Specifically, we first calculate the scores of 

degree, betweenness, pagerank, and participation coefficient at each node separately, where 

the computational details of these four centrality measurements are shown in Suppl. Tab. 

S1. Then, we normalize those scores of all nodes to the range of 0 to 1. Next, we sort all 

nodes according to the final composite score obtained by combining these four normalized 

centrality measurements in descending order. Lastly, we select top m nodes vi ∣ i = 1, …, m
as the underlying hub nodes by a given threshold. In our experiments on the ADNI database, 

the 40 nodes with the highest composite score (blue nodes) are designated as underlying hub 

nodes, as shown in Fig. 3.

2.2.2. Construction of region-specific pyramidal multi-scale harmonic 
wavelets—Given the group-mean adjacency matrix W− , the common harmonic waves Ψ
can be calculated by Eq. (1). Since the N × P  orthogonal matrix Ψ  located on the Stiefel 

manifold (Chikuse, 2003), it is suitable to be used as a common brain network harmonic 

bases (Atasoy et al., 2016, 2017) to characterize the frequency-based energy representations 

of each instance of neuropathological burdens f = fj j = 1
N  propagating throughout the brain 

network. However, the common harmonic waves have the limitation of global nature, like 

the Fourier bases in signal processing. In practical neuroscience applications, the spreading 

pathway of neuropathological events exhibits more localized propagation patterns that occur 

in hierarchical modules at particular brain regions (Vogel et al., 2020). To address this 

drawback, we provide region-specific pyramidal multi-scale complementary to the global 
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harmonics by integrating the region-specific and hierarchically modular constraints to Eq. 

(1).

In this section, we present the following three components to learn the region-specific 

pyramidal multi-scale harmonic wavelets Φi, k = [φi, k, q]q = 1
Q ∈ ℝN × Q on kth hierarchical 

module at the underlying hub node vi, where the Q stands for the number of wavelet 

frequencies.

First, the region-specific pyramidal multi-scale harmonic wavelets Φi, k is required to 

preserve the localized topological structure of brain network. Thus, this can be obtained 

by minimizing a harmonic energy term Esmootℎ Φi, k = Tr(Φi, k
T L−Φi, k). In addition, we constrain 

Φi, k to be an orthogonal base resided on the Stiefel manifold, i.e. Φi, k
T Φi, k = IQ.

Second, to reflect the hierarchically modular property of the brain 

network, we define a set of hierarchical modules on each underlying 

hub node vi in the network G, Gi, ℎ = Gi, k = V i, k, Ei, k k = 1,2, …, ℎ, where 

V i, k = v ∈ V ∣ s v, vi ≤ k , Ei, k = v′, v ∈ E ∣ v′, v ∈ V i, k , and s ⋅ , vi  is the length of the 

shortest-path between node vi and the other node based on group-mean adjacency matrix 

W− . Here, parameter ℎ stands for the number of hierarchical modules in the set Gi, ℎ. In our 

real experiments, we set ℎ = 3 according to the density of the brain network. Furthermore, to 

integrate the hierarchical modularity of brain network into each harmonic wavelets Φi, k, we 

require that the support of Φi, k does not expand more than kth hierarchical module centered 

at the underlying hub node vi, i.e., Gi, k. To achieve this goal, we introduce a hierarchically 

modular binary mask ui, k = ui, k j j = 1
N  as an auxiliary vector:

ui, k(j) =
1 vj ∈ V i, k in the hierarchical module Gi, k,
0 otherwise.

Finally, a region-specific pyramidal multi-scale harmonic wavelet presentation term 

can be defined by Elocal Φi, k = Tr Φi, k
T diag 1 − ui, k Φi, k , where diag ⋅  denotes the vector 

diagonalization. Minimizing Elocal Φi, k  tends to optimize ∥ Φi, k ∥2 to be zero out of the 

hierarchical module Gi, k. Since diag 1 − ui, k  is zero for the nodes in Gi, k and has no effect in 

minimizing the energy term Elocal, it can be used to suppress the waves (oscillations) out of 

Gi, k while preserving the waves in Gi, k.

Third, to reduce the redundancy between global common harmonic waves Ψ  and each 

harmonic wavelets Φi, k at node vi, we require common harmonics Ψ  to be independent 

of each harmonic wavelets Φi, k via constraint Φi, k
T Ψ = 0. To facilitate the computational 

complexity, we relax the constraint alternatively by promoting the orthogonality to the 

subspace spanned by Ψ , through minimizing Eortℎ(Φi, k) = Tr(Φi, k
T ΨΨTΦi, k). Similarly, we 

require that harmonic wavelets with different scales are orthogonal to each other, i.e. 

Φi, k
T Φi, l = 0Q, ∀k, l ∈ 1,2, 3 , k ≠ l.
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Finally, the whole energy function of identifying region-specific pyramidal multi-scale 

harmonic wavelets Φi, k in kth hierarchical module centered at the underlying hub node vi

is formulated as:

min
Φi, k

∑
k = 1

3
Tr Φi, k

T LΦi, k

+μ1Tr Φi, k
T diag 1 − ui, k Φi, k + μ2Tr Φi, k

T ΨΨTΦi, k

s.t . Φi, k
T Φi, k = I, Φi, k

T Φi, l = 0, ∀k, l ∈ 1, 2, 3 , k ≠ l

(2)

where μ1 and μ2 are two scalars balancing the strength of hierarchical modularity and 

redundancy with the global common harmonic waves Ψ .

2.3. Optimization: Identify region-specific pyramidal multi-scale harmonic wavelets via 
manifold optimization

In this section, for each underlying hub node vi, we first introduce a variable Ωi, which is 

achieved by simply integrating Φi, 1, Φi, 2, Φi, 3 into a new matrix Ωi = Φi, 1, Φi, 2, Φi, 3 ∈ ℝN × 3Q. 

Thus, the objective function in Eq. (2) can be rewritten as the following energy function 

form by simple mathematical transformations:

min
Ωi

Tr Ωi
T L + μ2ΨΨT Ωi

+μ1 ∑
k = 1

3
Tr ΔkΩi

Tdiag 1 − ui, k Ωi

s . t . Ωi
TΩi = I3Q

(3)

where

Δ1 =
IQ 0 0
0 0Q 0
0 0 0Q

, Δ2 =
0Q 0 0
0 IQ 0
0 0 0Q

, Δ3 =
0Q 0 0
0 0Q 0
0 0 IQ

Since Eq. (3) is a typical quadratic problem on the Stiefel manifold, it often required 

that Ai = L− + μ2ΨΨT + μ1∑k = 1
3 diag 1 − ui, k  is positive definite. In order to achieve this, we 

introduce a relaxation parameter α, which makes sure Ai = αI − Ai is a positive definite 

matrix. α is set as the greatest eigenvalue of matrix Ai. To simplify the formula, we use Bi, k to 

replace diag 1 − ui, k . By doing so, the minimization of Eq. (3) turns into maximizing:

max
Ωi

Tr Ωi
T (Ai + μ1 ∑

k = 1

3
Bi, k)Ωi − μ1 ∑

k = 1

3
Bi, kΩiΔk

s.t. Ωi
TΩi = I3Q

(4)

Furthermore, it can be rewritten as:
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max
Ωi

Tr Ωi
TMi s . t . Ωi

TΩi = I3Q (5)

where

Mi = (Ai + μ1 ∑
k = 1

3
Bi, k)Ωi − μ1 ∑

k = 1

3
Bi, kΩiΔk (6)

It is apparent that the objective function in Eq. (5) can be simply solved by power iteration 

(Nie et al., 2017) in the following four steps:

1. Randomly initialize Ωi ∈ ℝN × 3Q such that Ωi
TΩi = I3Q × 3Q and α is the greatest 

eigenvalue after applying SVD to matrix Ai.

2. Update Mi by calculating (Ai + μ1 ∑k = 1
3 Bi, k)Ωi − μ1 ∑k = 1

3 Bi, kΩiΔk.

3. Calculate Ωi by maximizing Tr Ωi
TMi  and subject it to orthogonal constraint 

Ωi
TΩi = I3Q. We can derive the closed-form solution by Ωi = UV T , where U and V

are the left and right Eigen matrix after the SVD on Mi.

4. Iteratively perform the step (2)~(3) until the algorithm converges.

Algorithm 1

Algorithm for Identifying Region-specific Pyramidal Multi-scale Harmonic Wavelets

Input: Parameters: μ1, μ2;

Symmetry Graph Laplacian matrix L− of group-mean adjacency matrix W‾ ;

Global common harmonic waves Ψ  by calculating eigenvectors of L‾ ;

Hierarchically modular binary mask ui, k of kth layer at underlying hub node vi;

Randomly initialized orthogonal matrix Ωi ∈ ℝN × 3Q;

Output: Ωi ∣ i = 1, ⋯, m
1: fori = 1,2, ⋯, mdo

2:  whileε > 0.01do

3:   Update Mi = (Ai + μ1∑k = 1
3 Bi, k)Ωi − μ1 ∑k = 1

3 Bi, kΩiΔk

4:   Run the compact SVD method: USV T = Mi

5:   Update Ωi = UV T .

6:   Update Newcost = Tr Ωi
TMi

7:   Update ε = abs Newcost − Oldcost

8:   Update Oldcost = Newcost

9:  end while

10: end for

Consequently, the entire optimization scheme of identifying region-specific pyramidal multi-

scale harmonic wavelets is summarized in Algorithm 1.
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Hyperparameter Tuning.—In the proposed objective function in Eq. (2), we need to tune 

two types of parameters: harmonic number (P  and Q) and hyperparameters μ1 and μ2 . Since 

the higher frequency harmonic waves tend to be sensitive to potential noise, we determine 

to use only the smallest P  eigenvectors Φs
P instead of the whole eigenvectors Φs. According 

to the reconstruction loss calculated by matrix norm between original Laplacian matrix Ls

and the reconstructed Laplacian matrix L̂s
P = Φs

P TΛPΦs
P with ΛP  as the diagonal matrix of 

the first P  eigen-value of the Laplacian matrix Ls, the dimension P  is determined, which 

is located at the stable point such that the reduction in reconstruction loss is marginal as 

P  increases. Additionally, the number Q of harmonic wavelets Φi, k is determined according 

to the average node degree of all underlying hub nodes. For the hyperparameter selection, 

we apply a grid search scheme to select the optimal parameters μ1 and μ2 based on the 

classification accuracy. In the following experiments on ADNI neuroimaging data, we set 

the harmonic number P = 55 and Q = 6, respectively. Regarding hyperparameters, we set 

μ1 = 0.8 and μ2 = 0.7 as the optimal parameters, achieving the best classification performance.

Computational Complexity and Convergence Analysis.—The complexity of 

Algorithm 1 is mainly dependent on SVD decomposition and matrix multiplication. In SVD 

decomposition, U and V  are N × 3Q  and 3Q × 3Q  matrices, so constructing these matrices 

has a time complexity of O NQ2 . While matrix multiplication has the same time complexity 

as SVD decomposition. In the whole algorithm, the maximal iteration number is H, and 

the number of samples is m; therefore, optimizing Algorithm 1 has the time complexity 

of O mHNQ2 . As shown in Algorithm 1, we adopt the generalized power iteration (GPI) 

to solve Eq. (5) on the Stiefel manifold. The convergence of the GPI algorithm has been 

theoretically proved by the theorem 1–2 in Nie et al. (2017).

2.4. Application: A new neuroimaging biomarker in AD

The empirical biomarkers such as amyloid deposition and tau tangle aggregation are the 

hallmarks of AD progression, which may be sufficient to cause downstream pathologic 

changes leading to cognitive decline (Jack Jr. et al., 2018). Traditional neuroimaging studies 

usually adopt empirical biomarkers to investigate the neuropathological mechanism of AD. 

In this work, we develop a novel harmonic wavelet analysis approach to discover the 

brain network changes that are associated with local propagation patterns of pathological 

burdens in multiple hierarchical modules at particular underlying hub nodes across the brain 

network. The learned region-specific pyramidal multi-scale harmonic wavelets Φi, k  are 

used to generate the new hierarchical-adaptive-wavelet representations (HAW in short) for 

each individual subject of observed empirical biomarkers f ∈ ℝN by:

ĥi, k, p = | f, φi, k, p |2 (7)

where each element in vector f denotes the biomarker score of each node in the 

brain network. The intuition behind ℎ̂i, k, p essentially characterizes the harmonic energy 

of spreading the neuropathological burden f through pth harmonic wavelet φi, k, p in kth 

hierarchical module at underlying hub node vi. In Section 3.2, we will show the enhanced 
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performance of our proposed new neuroimaging biomarkers in classifying CN, EMCI, and 

LMCI, compared with current state-of-the-art harmonic analysis approaches.

3. Experiments

To evaluate the statistical power of our HAW biomarker, we compare the performance of 

our proposed harmonic analysis approach to two state-of-the-art harmonic network analysis 

approaches on both simulated and real neuroimaging data. These two harmonic network 

analysis approaches include the global common harmonic wave identification method (Chen 

et al., 2020b) and single-scale harmonic wavelet identification technique (Chen et al., 2021). 

Thus, we define our proposed region-specific pyramidal multi-scale harmonic wavelets as 

Φm, global common harmonic waves as Φg, and single-scale harmonic wavelets as Φs. In 

addition, the empirical biomarkers f is also used as a baseline to compare with our proposed 

method.

3.1. Evaluation of HAW on simulated data

3.1.1. Data synthesis—In this section, we generate two different groups of simulated 

biomarker vectors fj
1 ∣ j = 1, …, n ∈ ℝN and fj

2 ∣ j = 1, …, n ∈ ℝN based on a given group-

mean adjacency matrix W‾ ∈ ℝN × N. Specifically, these two groups of simulated biomarker 

vectors are generated by the following steps: (1) generating two sets of key nodes and 

their corresponding propagation patterns based on the nodal degree and the nearest neighbor 

edges on W‾ , such as the node 2 with its corresponding hierarchically modular spreading 

pathways for group 1 (first two rows in Fig. 4(a)), and the node 11 with its corresponding 

hierarchically modular propagation patterns for group 2 (last two rows in Fig. 4(a)); (2) 

linearly combining the propagation patterns generated in step 1 with random weights to form 

two groups of simulated biomarker vectors; (3) adding the Gaussian noise contamination 

with standard deviation σ into the generated simulated dataset.

3.1.2. Representation capability of region-specific pyramidal multi-scale 
harmonic wavelets—Here, we use a toy example to illustrate the representation ability of 

region-specific pyramidal multi-scale harmonic wavelets identified by our proposed method. 

First, we generate two groups of simulated biomarker vectors with dimension N = 10, where 

the ground truth of key nodes and their corresponding propagation patterns are shown in 

Fig. 4(a). Secondly, we separately apply l1-SVM to classify these two groups based on the 

harmonic-based features generated by our proposed region-specific pyramidal multi-scale 

harmonic wavelets Φm, single-scale harmonic wavelets Φs, and global common harmonic 

waves Φg. The top 4 harmonics with the highest weight coefficient in Φm, Φs, and Φg are 

respectively selected as the candidate propagation patterns, as shown in Fig. 4(b–d). It is 

clear that (1) the region-specific pyramidal multi-scale harmonic wavelets identified by our 

proposed method are closest to the ground truth of propagation patterns, compared to the 

other two harmonic analysis methods. (2) The single-scale harmonic wavelet identification 

method can capture the first modular propagation patterns (shown in the first two rows of 

Fig. 4(c)), but exhibits poor performance in identifying second modular propagation patterns 

(shown in the last two rows of Fig. 4(c)). (3) Due to the global nature of the global common 
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harmonic waves, such harmonics are hard to characterize the localized propagation patterns, 

as shown in Fig. 4(d).

3.1.3. Accuracy of classification, underlying hub detection and propagation 
pattern identification—In this section, we are interested in evaluating the performance 

of our proposed method in classifying different groups, detecting underlying hub nodes, 

and identifying hierarchically modular propagation patterns. We generate two groups of 

the simulated datasets based on a given graph with N = 148 nodes, where each group 

consists of 15 key hub nodes and each hub node corresponds to three hierarchically modular 

propagation patterns. The accuracy of classification based on multi-scale wavelets Φm, 

single-scale wavelets Φs, global harmonics Φg, and original biomarkers f under various 

Gaussian noise contaminations σ is shown in Fig. 5(a). Since global common harmonic 

waves have the limitation of global-ness, we apply our proposed method and single-scale 

harmonic wavelet identification method to calculate the accuracy of detecting underlying 

hubs and multi-scale propagation patterns, as shown in Fig. 5(b,c). It is apparent that (1) the 

harmonic network analysis methods Φm, Φs, and Φg  achieve higher stratification accuracy 

than original biomarkers f. Among them, our proposed method outperforms the single-scale 

wavelets and global harmonics. (2) Since the harmonic wavelets Φm and Φs  have the 

power to characterize the localized propagation patterns, they are capable of locating the 

underlying hub nodes and thus achieve high hub node identification accuracy, while our 

proposed method is slightly better than the single-scale wavelet identification method. (3) 

Due to the hierarchically modular property of our proposed wavelets Φm, it exhibits an 

enhanced ability to identify the propagation patterns, compared to the single-scale harmonic 

wavelets Φs.

3.2. Evaluation of HAW on ADNI data

Training Data.—In this section, we collect neuroimaging data of 138 subjects (shown in 

Table 2), including T1-weighted MR and DWI images from the ADNI database, to construct 

the structural brain networks for identifying region-specific pyramidal multi-scale harmonic 

wavelets Φi, k ∣ i = 1, …, m; k = 1,2, 3 . Each structural brain network can be constructed by 

the following major image processing steps. First, we parcellate the cortical surface into 

148 cortical regions based on a T1-weighted MR image in the light of a Destrieux atlas 

(Destrieux et al., 2010). Then, we apply surface seed-based probabilistic fiber tractography 

(Destrieux et al., 2010) to the DWI image to generate a 148 × 148 anatomical connectivity 

matrix W t ∣ t = 1, …, 138 . Testing Data. After learning the region-specific pyramidal multi-

scale harmonic wavelets Φi, k , we collect another two datasets, including amyloid-PET 

scanned by AV45 and tau-PET neuroimaging datasets from ADNI for the downstream 

analyses. The demographic information of testing data is shown in Table 3. Similarly, 

we adopt the above-mentioned image processing pipeline to parcellate the cortical surface 

and calculate the standard update value ratio (SUVR) of each brain region for each PET 

image as an instance of empirical biomarkers fs ∣ s = 1, …, S . The detailed information of 

neuroimaging data preprocessing can be found in the Supplementary material.
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3.2.1. Evaluating the statistical power of HAW biomarker on amyloid-PET 
data—In what follows, we estimate the statistical power of our HAW biomarker in 

stratifying the aging subjects in the pre-clinical stage of AD, identifying the underlying 

AD-related brain regions, discovering the frequency-based harmonic wavelet alterations, and 

investigating the association between clinical information and significant harmonic wavelets 

on amyloid-PET neuroimaging data.

First, we build three group comparisons (CN/LMCI, CN/EMCI, and EMCI/LMCI) of 

amyloid biomarkers. For each comparison, we use the amyloid HAW biomarkers based 

on our harmonic wavelets Φm to train the classifier using l1-SVM optimized by the public 

toolbox LIBLINEAR (Fan et al., 2008). The l1-SVM applies the least square loss function to 

conduct the reconstruction error and embeds feature selection by the l1-norm regularization 

term on the coefficient matrix. To compare the classification power across harmonic network 

analysis methods, we separately train l1 - SVM on harmonic-based features based on global 

common harmonic waves Φg and single-scale harmonic wavelets Φs. To demonstrate the 

advantage of harmonic-based features over the empirical amyloid biomarkers, we also train 

l1-SVM classifier using the amyloid SUVR score f. Finally, the classification performance, 

including accuracy, specificity, sensitivity, and F-score, is evaluated using 10-fold cross-

validation. The final results are shown in Table 4. It is easy to draw that (1) our amyloid 

HAW biomarker achieves the highest accuracy, specificity, sensitivity, and F-score over 

all other methods in three group comparisons, where the red star ‘*’ indicates that our 

results are significantly better than those of the compared methods with p < 0.01; (2) the 

classification performance using harmonic wavelets Φm and Φs  is superior to those of global 

harmonic waves Φg, indicating the localized oscillation patterns in the harmonic wavelets 

are more appropriate for characterizing the propagation patterns of neuropathological 

burdens than global harmonic waves; (3) all harmonic-based features outperform empirical 

biomarkers f, which indicate the great potential of applying harmonic network analysis 

approaches in the early diagnosis of AD.

Second, benefiting from the feature selection of l1-SVM classifier, we show the Manhattan 

plot of the feature weight matrix obtained using the trained l1-SVM by taking CN/LMCI 

group comparison as an example in the first row of Fig. 6, where the panels from left 

to right represent the weight coefficients of the first, second, and third-scale harmonic 

wavelets respectively. We use different colors to denote the frequency of the harmonic 

wavelet. Moreover, we extract the top five key nodes depending on the highest weight 

coefficient across the spectrum of the amyloid HAW biomarkers from three different scales, 

respectively. Next, we calculate the betweenness and local efficiency for each node, as 

shown in the second row of Fig. 6, where the nodes at the first, second, and third scale 

are tagged in red, green, and blue respectively. The results of the other three centrality 

measurements (degree, pagerank, and participation coefficient) are shown in Suppl. Fig. S1. 

It is clear that the betweenness of those key nodes on a large scale is significantly higher 

than those on a small scale, while the local efficiency is contrary. These results indicate 

our proposed multi-scale harmonic wavelet analysis approach has the potential not only 

to discover the significant brain regions with high degree and local efficiency (putative 

provincial hubs), but also to identify the significant brain regions with high betweenness 
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score (putative connector hubs). Some of these identified nodes have been demonstrated to 

be closely related to the development and progression of AD, such as posterior cingulate 

(Buckner et al., 2009) and inferior frontal (Lin et al., 2017).

Third, we explore the frequency-based harmonic wavelet alterations on the amyloid 

deposition by using the learned region-specific pyramidal multi-scale harmonic wavelets. 

Recall we have identified in total fifteen significant brain regions from three different scales 

in CN/LMCI comparison using amyloid HAW biomarkers. Here, we focus on the significant 

harmonic wavelets associated with these fifteen brain regions (shown in Fig. 7(a)). We 

first calculate the total energy of significant harmonic wavelets associated with the fifteen 

identified brain regions for each subject and plot its distribution for CN (in red) and LMCI 

(in green) groups in Fig. 7(b). These results suggest that the empirical amyloid along the 

propagation pathway across the brain network raises the harmonic energy of particular 

harmonic wavelets, which ultimately leads to cognitive decline. Moreover, we visualize the 

top three significant harmonic wavelets with the highest weight coefficients in different 

scales in Fig. 7(c), where the red node denotes the central hub node, and the red/blue 

arrows indicate the positive/negative oscillations in each harmonic wavelet. These harmonic 

wavelets have great potential in characterizing the spreading pathways of neuropathological 

burdens related to the development of AD.

Fourth, we are interested in further research on whether there is a significant association 

between clinical information and the HAW biomarkers of identified significant harmonic 

wavelets. Here, the general linear model (GLM) is applied to predict the mini-mental state 

examination (MMSE) score using our HAW biomarkers, where age and gender are added 

as the confounders to reduce their influence in our statistical model. We apply the top three 

significant harmonic wavelets in different scales (shown in Fig. 7(c)) for GLM analyses 

and plot the statistical results in Fig. 8. It is apparent that (1) 100%(9/9) HAW biomarkers 

manifest a significant association p < 0.01  with the MMSE score on amyloid-PET data. (2) 

The significant amyloid HAW biomarkers are negatively associated with the MMSE scores, 

which is in line with the findings above.

3.2.2. Evaluating the statistical power of HAW biomarker on tau-PET data—
Similarly, we also separately train the l1-SVM classifier on our tau HAW biomarkers, 

harmonic-based features based on global common harmonic waves Φg and single-scale 

harmonic wavelets Φs, as well as tau SUVR score f to evaluate the classification 

performance using 10-fold cross-validation. The classification results of CN/EMCI, EMCI/

LMCI, and CN/LMCI group comparison, using our HAW biomarker and the other three 

biomarkers are shown in Table 5, where our tau HAW biomarker significantly outperforms 

the other three biomarkers on the accuracy, sensitivity, specificity, and F-score scores 

p < 0.01 . Then, we show the Manhattan plot of the weight coefficient matrix for all 

harmonic wavelets (3 scales × 40 regions × 6 harmonic frequencies) in CN/LMCI group 

comparison (shown in the first row of Fig. 9). The top five significant brain regions with 

the highest average weight coefficient (significant harmonic wavelet) for each scale are 

selected. We calculate the betweenness and local efficiency score for fifteen brain regions, 

and plot these scores in the second row of Fig. 9. These results manifest similar findings 
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(67%(10/15) key node coincidence rate) of Fig. 6 on amyloid-PET data, indicating the 

efficiency of our proposed method in identifying the putative hub nodes relevant to the 

development of AD. Furthermore, since fifteen brain regions (shown in Fig. 10(a)) have 

been identified as showing significant CN/LMCI group differences, we calculate the total 

energy of significant harmonic wavelets associated with these fifteen identified brain regions 

for each subject and plot their distribution for CN (in red) and LMCI (in green) groups in 

Fig. 10(b). The histogram of whole-brain harmonic energy illustrates a similar trend as the 

amyloid HAW biomarkers that the higher aggregation of tau tangles in the late-stage aging 

cohort produces a higher harmonic energy load in the brain network system. The top three 

significant harmonic wavelets for each scale mapped on the cortical surface are also shown 

in Fig. 10(c) respectively. We also apply the GLM model to the top three significant tau 

HAW biomarkers for each scale to predict the MMSE score and plot their statistical results 

in Fig. 11, where 78%(7/9) tau HAW biomarkers show a significantly negative association 

with the MMSE score.

4. Conclusion

In this paper, we propose a proof-of-concept harmonic wavelet analysis approach to identify 

the AD-related brain regions that are actively involved in the spreading pathways of 

neuropathological events. The backbone of our proposed method is a set of region-specific 

pyramidal multi-scale harmonic wavelets that allow us to characterize the propagation 

patterns of neuropathological burdens from multiple hierarchical modules centered at 

particular brain regions. In light of this, we present a manifold-based optimization method to 

generate harmonic wavelets by integrating the intrinsic characteristics of the brain-network 

organization, such as hub nodes and hierarchical modularity. Compared with other harmonic 

analysis methods, our proposed method achieves enhanced statistical power in group 

comparison on both simulated and ADNI neuroimaging datasets. In the future, we plan 

to investigate the association between the region-specific pyramidal multi-scale harmonic 

wavelets and genetic factors in AD progression.
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Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
(a) The hub nodes in brain network, including provincial hubs (red nodes) and connector 

hubs (green nodes). (b) The hierarchical modularity of brain network, where modules 

themselves are modular, thus leading to a nested or fractal topological hierarchy. (c) The 

harmonic wavelet, where the red/blue arrows indicate the positive/negative oscillations.
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Fig. 2. 
Illustration of workflow. (a) The underlying hub nodes vi (red dots) are estimated by a series 

of network centrality measurements. (b) The brain network hierarchical module Gi, k on kth 

layer at the underlying hub node vi is obtained by a hierarchically modular binary mask 

representation method. (c) The region-specific pyramidal multi-scale harmonic wavelets 

Φi, k located on the hierarchical module Gi, k is learned by minimizing our proposed energy 

function. (d) The empirical biomarkers fs can be used to combine the learned harmonic 

wavelets Φik to generate a new neuroimaging biomarker for downstream analyses. (e) The 

l1-norm support vector machine (l1-SVM) is employed to jointly construct feature selection 

(i.e., AD-related brain regions and propagation patterns) and the classification task (i.e., 
disease diagnosis).
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Fig. 3. 
Population distribution illustration of betweenness, nodal degree, pagerank, and participation 

at each node. The top 50 of 148 nodes are shown in order from high to low based 

on the composite score. The blue nodes in the brain represent the selected underlying 

hub nodes, whose size stands for the value of composite score. The histogram visualizes 

the composite score by summing the normalized betweenness (red), nodal degree (blue), 

pagerank (orange), and participation coefficient (green) for each node.
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Fig. 4. 
Representation power comparison among our multi-scale harmonic wavelets, single-scale 

harmonic wavelets, and global common harmonic waves. (a) The ground truth of key nodes 

v2 and v11  and their corresponding hierarchically modular propagation patterns, where green 

nodes represent the first modular nodes and yellow nodes stand for the second modular 

nodes. (b) the oscillation patterns of the top 4 multi-scale harmonic wavelets detected by 

our method. (c) in the context of single-scale harmonic wavelets. (d) in the context of global 

common harmonic waves.
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Fig. 5. 
A comparison of performance on (a) classification, (b) underlying hub detection, and (c) 

propagation pattern identification under various noise contaminations. The x-axis and y-axis 

represent the noise standard deviation σ and accuracy, respectively.
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Fig. 6. 
Illustration of the significant brain region identification in CN/LMCI comparison using 

amyloid HAW biomarkers. The first row shows the Manhattan plot of SVM weight 

coefficients of region-specific pyramidal multi-scale harmonic wavelets. The black line is 

located at the average of all SVM weight coefficients. The second row visualizes the line 

plot of betweenness and local efficiency at the top five key nodes from the first (red), second 

(green), and third (blue) scales. (L) stands for the left hemisphere of the brain, while (R) 

stands for the right correspondingly.
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Fig. 7. 
Illustration of the frequency-based harmonic wavelet alteration discovery in CN/LMCI 

comparison using amyloid HAW biomarkers. In (a), we map the fifteen significant brain 

regions to the cortical surface. In (b), we show the histogram of total energy of the 

significant harmonic wavelets associated with the fifteen identified brain regions for CN 

and LMCI groups in red and green, respectively. In (c), we visualize the top three significant 

harmonic wavelets in different scales, and the red/blue arrows indicate the positive/negative 

oscillations in each harmonic wavelet.
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Fig. 8. 
The association analyses between significant HAW biomarkers and clinical information 

(MMSE) on amyloid-PET data. The subjects in CN and LMCI group are represented in red 

and blue dot, respectively. In addition, the statistical results (R value and p value) are also 

provided in each panel.
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Fig. 9. 
Illustration of significant brain region identification in CN/LMCI comparison using tau 

HAW biomarkers. The symbols and meanings in Fig. 6 also apply to those in this figure. 

Please refer to the captions of Fig. 6.
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Fig. 10. 
Illustration of the frequency-based harmonic wavelet alteration discovery in CN/LMCI 

comparison using tau HAW biomarkers. The symbols and meanings in (a)–(c) of Fig. 7 also 

apply to (a)–(c) in this figure, respectively. Please refer to the captions of Fig. 7.
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Fig. 11. 
The association analyses between significant HAW biomarkers and clinical indicator 

(MMSE) on tau-PET data. The symbols and meanings in Fig. 8 also apply to those in 

this figure. Please refer to the captions of Fig. 8.
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Table 1

List of notations used in this paper.

Notation Remark

x, x, X Scalar, vector and matrix

W Weighted adjacency matrix

W The minimum spanning tree (MST) of weighted adjacency matrix W

W− The average of all W t ∣ t = 1, …, T

L− Graph Laplacian matrix of the group-mean adjacency matrix W−

Ψ Global common harmonic waves

Φi, k Harmonic wavelets kth scale at underlying hub node vi

Ωi The harmonic wavelets on all scales at underlying hub node vi

ui, k Hierarchically modular mask on kth layer at underlying hub node vi

ℝN N-dimensional real space
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Table 2

Demographic information of MRI Neuroimaging Data.

Gender Number Range of age Average age CN SMC EMCI LMCI AD

Male 77 55.0~90.3 74.4 15 6 29 12 15

Female 61 55.6~87.8 72.8 14 14 14 9 10

Total 138 55.0~90.3 73.7 29 20 43 21 25
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Table 3

Demographic Information of Amyloid-PET and Tau-PET Neuroimaging Data.

PET Gender Number Range of age Average age CN EMCI LMCI

Male 450 55.0~91.4 73.4 136 184 130

Amyloid Female 389 55.0~89.6 71.7 148 145 96

Total 839 55.0~91.4 72.6 284 329 226

Male 180 55.0~90.1 72.2 76 69 35

Tau Female 150 55.0~88.1 70.1 81 44 25

Total 330 55.0~90.1 71.3 157 113 60
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